DESCRIPTION

This TotalPac®3 integrated fire protection system by FireFlex Systems Inc. consists of a preaction system trim totally pre-assembled, pre-wired and factory tested. All electrical and mechanical components of the system are contained in one single unit.

TotalPac®3 preaction systems are built around the Viking trim using deluge valves model F-1.

Electric/Pneumatic controlled, double interlock preaction systems use pneumatic supervision of the automatic sprinkler system, and an electric detection system. The deluge valve release trim uses a normally closed electric solenoid valve controlled by an approved system releasing control panel with two initiating circuits configured for “cross-zoned” operation. One initiating circuit is connected to the electric detection system; the other to a “Low-Air” alarm switch. Both the electric detection system AND supervisory pressure must be relieved from the sprinkler system before the deluge valve will open and fill the sprinkler system with water.

Activation of a releasing device alone or operation of a sprinkler alone will sound an alarm but will NOT cause the system to fill with water.

All the valves are rated up to a maximum of 250 psi WWP (1724 kPa) max. and are available in the following diameters:

- □ 1½” (40 mm)
- □ 2” (100 mm)
- □ 3” (80 mm)
- □ 4” (100 mm)
- □ 6” (150 mm)
- □ 8” (200 mm)

Standard features

- cULus Listed & FM Approved as an assembled unit
- Factory assembled, programmed and tested under ISO-9001 standards
- Prewired to the Viking VFR-400 releasing control panel.
- Easy and compact installation
- Viking conventional trim rated at 250 psi (1724 kPa)
- Galvanized trim piping
- Serial number for easy reference
- Corrosion resistant cabinet with flush type handle and lock
- No open drain cup inside the unit
- Numerous modular options to meet the most demanding jobsite requirements
- Four styles of modular air supply options
- Inlet & outlet hydrostatic test ports
- User-friendly standardized operation & installation manual
- Free interactive simulator
Cabinet

The TOTALPac®3 cabinets are made of sturdy 14 gauge steel, they are available in four (4) sizes;
23” x 25” x 77” (58.4 x 63.5 x 195.6 cm) for 1½”, and 2” systems,
36” x 25” x 77” (91.4 x 63.5 x 195.6 cm) for 3” and 4” system,
46” x 25” x 77” (116.8 x 63.5 x 195.6 cm) for 6” system
54” x 31” x 81” (137.2 x 78.7 x 205.7 cm) for 8” system

All surfaces are rust proof coated, inside and outside, with fire red, oven baked polyester powder on phosphate base. Cabinet is provided with one or two doors, all provided with a neoprene gasket to absorb vibrations.

A field wiring electrical junction boxes is integrated with the cabinet for connection of detection system, auxiliary contacts and signaling devices. All inputs & outputs are factory wired to a terminal strip (TBA) for contractor's field wiring.

Gauges to indicate air, water supply pressure and priming water pressure are all visible through clear Lexan windows.

IMPORTANT: TOTALPac®3 units are NOT designed to be installed where they will be subjected to outdoors and/or freezing conditions. Refer to environmental data for additional details. Subjecting the unit to conditions outside these limitations might tamper the normal operation of the system.

The cabinet assembly is pre-assembled, pre-wired, and factory tested under ISO-9001 conditions.

Multiple unit installations are easily achieved by manifolding units together at their water inlets but drains shall remain separate and open.

Sequence of operation (see trim diagram)

In a fire condition, operation of the detection system activates the first initiating circuit in the system releasing control panel, causing an alarm to activate. When a sprinkler operates, air pressure escapes from the sprinkler piping. The air supervisory switch activates the second initiating circuit in system releasing control panel. When BOTH initiating circuits have been activated, system releasing control panel energizes solenoid valve (F1) open.

Pressure is released from the priming chamber of the deluge valve (A1) to the open drain manifold faster than it is supplied through the restricted orifice (B3). The deluge valve clapper opens to allow water to flow into the system piping and alarm devices, causing the alarm pressure switch (C1) and optional water motor alarm (C2) to activate. Water will flow from any open sprinklers and/or other opening in the sprinkler piping.

When the deluge valve operates, the sensing end of the PORV (B9) is pressurized, causing the PORV to open. When the PORV opens, it drains the priming water pressure to the priming chamber, preventing the deluge valve (A1) from resetting, even if the open releasing devices close. The deluge valve can only be reset after the system is taken out of service, and the outlet chamber of the deluge valve and associated trim piping is depressurized and drained.
Systems hydraulic limitations

WARNING The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer. Designers should refer to the appropriate NFPA Standards and any other applicable codes for their final design.

<table>
<thead>
<tr>
<th>System size (in.)</th>
<th>Usage Range (gpm)</th>
<th>Piping Equivalent Lengths w/o shut off valve (m.)</th>
<th>Piping Equivalent Lengths c/w shut off valve (m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½</td>
<td>0 – 210</td>
<td>8.3</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>0 – 360</td>
<td>11.65</td>
<td>11.85</td>
</tr>
<tr>
<td>3</td>
<td>100 – 700</td>
<td>16.8</td>
<td>20.33</td>
</tr>
<tr>
<td>4</td>
<td>200 – 1400</td>
<td>21.89</td>
<td>25.33</td>
</tr>
<tr>
<td>6</td>
<td>400 – 3500</td>
<td>33.28</td>
<td>37.28</td>
</tr>
<tr>
<td>8</td>
<td>750 – 5250</td>
<td>41.15</td>
<td>44.71</td>
</tr>
</tbody>
</table>

System drain flow:

<table>
<thead>
<tr>
<th>System size</th>
<th>USGPM Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" & 2"</td>
<td>0.5 x (water pressure Psi) + 65 = USGPM</td>
</tr>
<tr>
<td>3"</td>
<td>1.2 x (water pressure Psi) + 130 = USGPM</td>
</tr>
<tr>
<td>4", 6" & 8"</td>
<td>2.7 x (water pressure Psi) + 215 = USGPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System size</th>
<th>LPM Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" & 2"</td>
<td>2 x (water pressure Psi) + 235 = LPM</td>
</tr>
<tr>
<td>3"</td>
<td>4 x (water pressure Psi) + 490 = LPM</td>
</tr>
<tr>
<td>4", 6" & 8"</td>
<td>10 x (water pressure Psi) + 800 = LPM</td>
</tr>
</tbody>
</table>
Standard equipment

Releasing control panel
- 120 VAC / 60 Hz, 165VA.
- 220 VAC / 50 Hz, 185VA.
- 12VDC / 7Ah batteries. (factory installed)
- 12VDC / 12Ah batteries. (optional)
- Single Zone detection
 (Activated by Zone 1 or Zone 2)
- Crossed-Zone detection
 (Activated by Zone 1 and Zone 2)

The releasing control panel integrated into the TotalPac®3 cabinet is Viking's Model VFR-400. This panel includes four Class B, programmable detection zones (optional Class A); two Class B supervisory zones and four Class B, programmable output circuits (optional Class A). It is also provided with menu driven programming, including a specific program assigned at the factory.

The panel is compatible with many types of fire alarm & supervisory devices such as linear heat detectors, spot-type heat and smoke detectors, water flow and release indicators, low and high air pressure switches, manual pull stations.

The releasing control panel also includes an alphanumeric display with 2 lines of 16 characters describing all the system conditions, as well as a set of red and yellow LED lamps individually indicating each of the alarm and trouble conditions of the system.

Easy to operate control buttons are also provided to activate and operate the system's various functions.

Releasing circuit disable switch

The releasing circuit disable switch is used to disable the releasing solenoid. When the key is set to “Disable”, the releasing solenoid will be disconnected from the control panel’s releasing circuit, causing a trouble signal and preventing accidental discharge during maintenance or inspection.

Deluge valve

The Viking Model deluge valve is a quick-opening, differential diaphragm, flood valve with one moving mechanism. The deluge valve is used to control water flow in deluge and preaction sprinkler systems. The valve is held closed by system water pressure trapped in the priming chamber, keeping the outlet chamber and system piping dry. In fire conditions, when the releasing system operates, pressure is released from the priming chamber. The deluge valve clapper opens to allow water to flow into the system piping.

Water supply control valve

The water inlet control valve is a supervised, indicating butterfly valve. Purpose of this valve is to manually shutoff the preaction system.

Preadion riser check valve

The Viking spring loaded In-Line check valve is a general purpose rubber-faced check valve approved for use in fire-service systems. The Spring Loaded In-Line check valve is manufactured with a brass body, brass seat, and a rubber-faced clapper assembly.

The Viking Easy Riser® Swing check valve is a general purpose rubber-faced check valve approved for use in fire service systems. The valve is for use in preaction system risers.
Preaction riser check valve
The Viking spring loaded In-Line check valve is a general purpose rubber-faced check valve approved for use in fire service systems. The Spring Loaded In-Line check valve is manufactured with a brass body, brass seat, and a rubber-faced clapper assembly.

The Viking Easy Riser® Swing check valve is a general purpose rubber-faced check valve approved for use in fire service systems. The valve is for use in preaction system risers.

Solenoid valve
The high pressure solenoid valve is a two-way type with one inlet and one outlet. It is a packless, internal pilot operated valve, suitable for use in releasing water pressure from the priming chamber of Viking deluge valves. The solenoid valve has floating diaphragm construction, which requires a minimum pressure drop across the valve to operate properly.

Alarm pressure switch
The alarm pressure switch monitors the water flow within the sprinkler piping. Should the Deluge Valve clapper open to allow water to flow into the sprinkler piping. The alarm pressure switch will activate, indicating a water flow signal.

Low air supervisory switch
The low pressure switches monitors the pressure within the sprinkler piping should a loss pressure of the air below 12PSI occurs. The pressure switch contacts transfer indicating supervisory signal.
Optional mechanical equipment

- **Shut-off valve & sight glass option**
The Shut-off valve & sight glass option is intended to be used for applications where testing of the system operation without filling the sprinkler piping network is desirable and where it is critical that all functions of the preaction system be tested under actual discharge conditions. Examples of such applications are freezers, ovens, museums, data processing and other hazards where the possibility of water leaking from the piping system is to be avoided at all costs.

Warning: Shut-off valve & sight glass option is **not available** on 8" systems.

- **Fire department connection**
The fire department connection option consists of a grooved tee fitting installed the outlet of the deluge valve (A1). An access hole of the proper diameter is factory pre-drilled on the side of the **TOTALPAC®3** enclosures for connection of the piping going to the fire department connection.

Note: The fire department connection hardware itself (drain, Siamese, etc.) is NOT provided with this option and shall be provided by the installing contractor. Refer to NFPA-13 Standard for additional information about the equipment layout and installation.

Warning: Fire department connection is **not available** on 8" systems.
Semi and full flanged option
When required by the user, TOTALPAC®3 units can be provided in either a semi-flanged or full flanged configuration.

The semi flanged option provides flanged fittings only on the water inlet pipe (side needs to be specified at the time of order) and on the system riser outlet. The drain manifold is then provided with a threaded end that also needs to have its side specified (left or right). The rest of the fittings are the same as usual with the main components being provided in the standard grooved-grooved configuration.

The full flanged option is the same as above but goes a step further with the main components being also provided with a flanged-flanged configuration.

When provided, the face of the flanges will always be situated 6 inches from the outside face of the mounting base or cabinet surface.

Anti-column device option
The model LD-1 anti-column device is an optional trim component designed for use with preaction sprinkler systems. The anti-column device automatically prevents an unwanted water column from establishing within the system riser. On preaction sprinkler systems the anti-column device prevents water from columning downstream of the easy riser check valve.

OSHPD option
Pre-approved construction, under OSP-0341-10, using specific components.
Direct air compressor (Style “A”)

Used only for the sprinkler piping network of the preaction system. Air supply style “A” includes the air compressor mounted inside the TotalPac®3 cabinets with its supervisory trim and options. Compressors are of the tankless, oilless piston type and are factory piped to the sprinkler system riser, all within the TotalPac®3 cabinets.

Compressors are available in eleven (11) sizes:

- 1/6HP
- 1/3HP
- 1HP
- 2HP
- 0.12Kw
- 0.25Kw
- 0.56Kw
- 1.2Kw
- 1.5Kw

WARNING

1-1/2H, 2HP and 1.5Kw compressors are only available for 8” system.

Air supply

Compressor Amperage (amps)

<table>
<thead>
<tr>
<th>Compressor Size (Kw)</th>
<th>220Vac / 50Hz</th>
<th>240Vac / 50Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12 FLA Start-up</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>0.25 FLA Start-up</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>0.56 FLA Start-up</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>1.2 FLA Start-up</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1.5 FLA Start-up</td>
<td>6.3</td>
<td>6.0</td>
</tr>
</tbody>
</table>

115 / 208 / 230 Vac 60Hz air compressor selection Table:

<table>
<thead>
<tr>
<th>H.P</th>
<th>CFM @ 40 PSI</th>
<th>System capacity to fill system to 20 PSI in 30 minutes *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1.52</td>
<td>320 gal.</td>
</tr>
<tr>
<td>1/3</td>
<td>3.03</td>
<td>550 gal.</td>
</tr>
<tr>
<td>1/2</td>
<td>4.43</td>
<td>850 gal.</td>
</tr>
<tr>
<td>1</td>
<td>7.46</td>
<td>1550 gal.</td>
</tr>
<tr>
<td>1-1/2</td>
<td>11.10</td>
<td>1997 gal.</td>
</tr>
<tr>
<td>2</td>
<td>14.85</td>
<td>3247 gal.</td>
</tr>
</tbody>
</table>

220 / 240 Vac 50Hz air compressor selection Table:

<table>
<thead>
<tr>
<th>Kw</th>
<th>LPM @ 40 PSI</th>
<th>System capacity to fill system to 20 PSI (241 kPa) in 30 minutes *</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>35.4</td>
<td>1050 L</td>
</tr>
<tr>
<td>0.25</td>
<td>68</td>
<td>2642 L</td>
</tr>
<tr>
<td>0.56</td>
<td>103</td>
<td>2873 L</td>
</tr>
<tr>
<td>1.2</td>
<td>178</td>
<td>4762 L</td>
</tr>
<tr>
<td>1.5</td>
<td>260</td>
<td>6859 L</td>
</tr>
</tbody>
</table>

* For systems with maximum water supply pressure of 250 PSI (1724 kPa)

WARNING

The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer.
Air Pressure Maintenance Device (Style “B”)

Used only for the sprinkler piping network of the preaction system, when an external air supply is provided by others (tank mounted compressor, plant air or dry nitrogen cylinders) and piped to the air inlet port of the unit. Air supply style "B" provides an Air Pressure Maintenance Device (APMD) trim, factory mounted in the TotalPac®3 cabinets.

Direct air, external compressor (Style “D”)

Mainly used with Preaction systems protecting refrigerated spaces and freezers, where a special dry external air supply unit is piped directly to the system riser inside the freezer itself, as shown in NFPA-13. Air supply Style "D" provides only an air supervisory and shut-off trim.

Warning: When air supplies style "B" or "D" is selected, the air supply should be provided and installed by the sprinkler contractor OUTSIDE of the TotalPac®3 cabinet. It is NOT provided with the unit.
Optional air supply equipments

- **Dehydrator option**
The Viking Dehydrator is a manually regenerated desiccant-type air dryer. The desiccant acts as a moisture indicator by changing color, and is visible through the required bowl guard and transparent plastic bowl. The Dehydrator directs the incoming air down through the silica gel desiccant. The silica gel absorbs the moisture without physically changing. As the relative humidity increases, the silica gel begins to change color from dark blue to light pink, indicating the desiccant must be replaced.

- **Accelerator option**
The Viking Model E-1 Accelerator is a quick-opening device. The Viking Model E-1 Accelerator may be used without the Anti-flood device to speed the action of a pneumatic release system on a preaction system.
Details & field wiring diagrams

Cabinet with main components - Configuration with releasing control panel, shown with air style "A"
TotalPac®3
Double interlock Preaction, Electric/PnuLectric release
Self-contained system

Trim diagram

Trim Components:

A1 Deluge valve
B1 Priming valve
B2 Strainer
B3 1/16" Restricted orifice
B4 Spring loaded check valve
B5 Alarm test valve
B6 Flow test valve
B7 Drip check valve
B8 Drain check valve
B9 Pressure operated relief (PORV)
B10 Emergency release valve
B11 Priming pressure water gauge & valve
B12 Water supply pressure gauge & valve
B13 Clapper check valve
C1 Alarm pressure switch
C2 Connection to water motor gong (strainer supplied by contractor)
D1 Water supply control valve
D2 Riser check valve
D3 Main drain valve
F1 N.C Solenoid Valve – 24Vdc
Field wiring diagrams, Double interlock Electric / Pneumatic release, Self-Contained:

Power limited (supervised) initiating device circuits

- Zones 1 (detection), 2 (detection) and 4 (manual release):
 - Max. loop resistance: 100Ω
 - End of line: 5.1kΩ, 1/4W
 - Leave ELR (provided) on all unused circuits.

Refer to the VFR-400 release control panel manual for device compatibility.

Auxiliary power 24Vdc regulated source

- Total current available: 0.2A
- Resettable for 4 wires smoke detectors

Power limited (supervised) notification appliance circuits

- Output circuits 1, 2, and 4:
 - Maximum operating voltage: 27Vdc (ripple: 0.3Vdc)
 - Maximum usable current per circuit: 1.0A
 - Total current available (all circuits): 2.5A
 - End of line: 5.1kΩ, 1/4W
 - Leave ELR (provided) on all unused circuits.

- Polarity is reversed in supervisory condition.

Refer to the VFR-400 release control panel manual for device compatibility.
Optional electrical equipments

- **Relay module ARM-44**
 The ARM-44 is an auxiliary relay module designed to operate with the Viking VFR-400 releasing control panel to provide 4 independent form C relay outputs. The 4 output circuits each have a dedicated relay. Each relay is rated for 3 amps at 24 volts DC resistive load. The relay module mounts directly to the back of the cabinet and is connected to the main board. All of the relay terminals are wired back to the field wiring junction box. A disable switch is available for disabling the relays when the system is being tested or serviced.

- **Remote Annunciator RA-4410-RC**
 The RA-4410-RC remote annunciator is designed to operate with the Viking VFR-400 releasing control panel. There are 34 LED's to indicate a change in panel status. There is a buzzer on the annunciator that sounds for any trouble or supervisory condition. The release control panel supervises and communicates with the annunciator via separate connections for the RS-485 communication and the 24VDC power requirement of the RA-4410-RC. Separate cables should be used for power and communication. Shielded cable MUST be used for the RS-485 communication line.

- **Class A initiating device module CA2Z**
 The Model CA2Z Class A Module is designed to be used with the Viking VFR-400 releasing control panel to convert from two (Class B) initiating device circuits to two (Class A) circuits. The module is to be mounted in the upper right hand corner of the panel. All the connections are wired back to the field wiring junction box.

- **CLASS A INDICATING APPLIANCE CIRCUIT MODULE**
 The Model CAM Class A Module is designed to be used with the Viking VFR-400 releasing control panel to convert a single (Class B) indicating appliance circuit to a (Class A) circuit (one module is required for each indicating appliance circuit). After installing the CAM, the indicating circuit should be activated to ensure proper operation and connections. The module is provided with double-sided foam tape and should be mounted in the field wiring junction box so that the terminals are accessible.
Figure 1 – Cabinet dimensions:

Table 1 - Cabinet dimensions - dimensions are in inches (mm)

<table>
<thead>
<tr>
<th>Unit size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" (40)</td>
<td>2"</td>
<td>1½"</td>
<td>2"</td>
<td>2"</td>
<td>23"</td>
<td>25"</td>
<td>77"</td>
<td>4"</td>
<td>8½"</td>
<td>11½"</td>
<td>13¼"</td>
<td>3½"</td>
<td>2½"</td>
<td>2½"</td>
<td>8"</td>
<td>11½"</td>
<td>27"</td>
<td>37½"</td>
<td>41½"</td>
<td>34½"</td>
<td>43½"</td>
</tr>
<tr>
<td>2" (50)</td>
<td>2"</td>
<td>2"</td>
<td>2"</td>
<td>2"</td>
<td>23"</td>
<td>25"</td>
<td>77"</td>
<td>4"</td>
<td>8½"</td>
<td>11½"</td>
<td>13¼"</td>
<td>3½"</td>
<td>2½"</td>
<td>2½"</td>
<td>8"</td>
<td>11½"</td>
<td>27"</td>
<td>38"</td>
<td>42"</td>
<td>34¼"</td>
<td>44¼"</td>
</tr>
<tr>
<td>3" (80)</td>
<td>4"</td>
<td>3"</td>
<td>2"</td>
<td>2"</td>
<td>35¼"</td>
<td>25"</td>
<td>77"</td>
<td>4"</td>
<td>10"</td>
<td>11½"</td>
<td>13¼"</td>
<td>3½"</td>
<td>2½"</td>
<td>2½"</td>
<td>8"</td>
<td>11½"</td>
<td>27"</td>
<td>39½"</td>
<td>44½"</td>
<td>47½"</td>
<td>37"</td>
</tr>
<tr>
<td>4" (100)</td>
<td>4"</td>
<td>4"</td>
<td>2"</td>
<td>2"</td>
<td>35¼"</td>
<td>25"</td>
<td>77"</td>
<td>4"</td>
<td>10"</td>
<td>11½"</td>
<td>13¼"</td>
<td>3½"</td>
<td>2½"</td>
<td>2½"</td>
<td>8"</td>
<td>11½"</td>
<td>27"</td>
<td>40½"</td>
<td>48½"</td>
<td>47½"</td>
<td>37"</td>
</tr>
<tr>
<td>6" (150)</td>
<td>6"</td>
<td>6"</td>
<td>2"</td>
<td>2"</td>
<td>46"</td>
<td>25"</td>
<td>77"</td>
<td>4"</td>
<td>11"</td>
<td>13¼"</td>
<td>13¼"</td>
<td>3½"</td>
<td>5¼"</td>
<td>5¼"</td>
<td>12"</td>
<td>13¾"</td>
<td>50"</td>
<td>59¼"</td>
<td>65¼"</td>
<td>51½"</td>
<td>70¼"</td>
</tr>
<tr>
<td>8" (200)</td>
<td>8"</td>
<td>8"</td>
<td>2"</td>
<td>2"</td>
<td>54"</td>
<td>31"</td>
<td>81"</td>
<td>8"</td>
<td>12"</td>
<td>13¾"</td>
<td>17"</td>
<td>3½"</td>
<td>9"</td>
<td>6½"</td>
<td>27"</td>
<td>13¾"</td>
<td>58"</td>
<td>70"</td>
<td>75¼"</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions are nominal and may vary ±¼" (±5mm).
2. Dimensions U, V & W are for optional fire department connection.
Figure 2 - Floor anchoring dimensions

Table 2 - Floor anchoring dimensions

<table>
<thead>
<tr>
<th>Unit size</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" (40mm)</td>
<td>25" (635mm)</td>
<td>15" (380mm)</td>
</tr>
<tr>
<td>2" (50mm)</td>
<td>25" (635mm)</td>
<td>15" (380mm)</td>
</tr>
<tr>
<td>3" (80mm)</td>
<td>37¾" (959mm)</td>
<td>15" (380mm)</td>
</tr>
<tr>
<td>4" (100mm)</td>
<td>37¾" (959mm)</td>
<td>15" (380mm)</td>
</tr>
<tr>
<td>6" (150mm)</td>
<td>48" (1220mm)</td>
<td>15" (380mm)</td>
</tr>
<tr>
<td>8" (200mm)</td>
<td>56" (1422mm)</td>
<td>21" (530mm)</td>
</tr>
</tbody>
</table>

Note: Minimum dimensions are according to door clearance and external piping requirements.

Figure 3 - Cabinet & doors clearance detail

Table 3 - Cabinet clearance dimensions

<table>
<thead>
<tr>
<th>Unit size</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" (40mm)</td>
<td>24" (610mm)</td>
<td>12" (305mm)</td>
<td>48" (1219mm)</td>
</tr>
<tr>
<td>2" (50mm)</td>
<td>24" (610mm)</td>
<td>12" (305mm)</td>
<td>48" (1219mm)</td>
</tr>
<tr>
<td>3" (80mm)</td>
<td>24" (610mm)</td>
<td>12" (305mm)</td>
<td>60" (1524mm)</td>
</tr>
<tr>
<td>4" (100mm)</td>
<td>24" (610mm)</td>
<td>12" (305mm)</td>
<td>60" (1524mm)</td>
</tr>
<tr>
<td>6" (150mm)</td>
<td>24" (610mm)</td>
<td>12" (305mm)</td>
<td>70" (1778mm)</td>
</tr>
<tr>
<td>8" (200mm)</td>
<td>32" (813mm)</td>
<td>12" (305mm)</td>
<td>78" (1981mm)</td>
</tr>
</tbody>
</table>

Figure 4 - Knockouts details

Table 4 - System weight in cabinet

<table>
<thead>
<tr>
<th>System size</th>
<th>Weight 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" (40mm)</td>
<td>450 lb (204 kg)</td>
</tr>
<tr>
<td>2" (50mm)</td>
<td>455 lb (206 kg)</td>
</tr>
<tr>
<td>3" (80mm)</td>
<td>655 lb (297 kg)</td>
</tr>
<tr>
<td>4" (100mm)</td>
<td>730 lb (331 kg)</td>
</tr>
<tr>
<td>6" (150mm)</td>
<td>1080 lb (490 kg)</td>
</tr>
<tr>
<td>8" (200mm)</td>
<td>1445 lb (655 kg)</td>
</tr>
</tbody>
</table>
Figure 5 - Open drain details for single unit

Table 5 - Manifold dimensions

<table>
<thead>
<tr>
<th>Unit size</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" (40mm)</td>
<td>8¾" (222mm)</td>
<td>13¾" (350mm)</td>
<td>2" (50nm)</td>
</tr>
<tr>
<td>2" (50mm)</td>
<td>8¾" (222mm)</td>
<td>13¾" (350mm)</td>
<td>2" (50nm)</td>
</tr>
<tr>
<td>3" (80mm)</td>
<td>10" (255mm)</td>
<td>13¾" (350mm)</td>
<td>2" (50nm)</td>
</tr>
<tr>
<td>4" (100mm)</td>
<td>10" (255mm)</td>
<td>13¾" (350mm)</td>
<td>2" (50nm)</td>
</tr>
<tr>
<td>6" (150mm)</td>
<td>11" (280mm)</td>
<td>13¾" (350mm)</td>
<td>2" (50nm)</td>
</tr>
<tr>
<td>8" (200mm)</td>
<td>12" (305mm)</td>
<td>17½" (445mm)</td>
<td>2" (50mm)</td>
</tr>
</tbody>
</table>

Figure 6 - Open drain details for multiple units
(refer to dimensions in table 5)

Notes:
1. Water supply and drain pipes can be connected on either sides of cabinet.
2. All pipes and fittings should meet applicable codes.
3. Actual drain collector diameter shall be determined with detailed hydraulic calculations and is the responsibility of the system designer.