FIREFLEX
Advanced Integrated Fire Protection Systems

TotalPac® 3
Single interlock Firecycle III Preaction Remote controlled system

DESCRIPTION

This TotalPac® 3 integrated fire protection system by FireFlex Systems Inc. consists of a Firecycle® III system trim totally pre-assembled, pre-wired and factory tested. All electrical and mechanical components of the system are contained in one single unit.

TotalPac® 3 Firecycle® III systems are built around the Viking trim using flow control valves model J-1.

Firecycle® III single interlock preaction system uses closed automatic sprinklers in the sprinkler piping. A detection network is used in parallel with the automatic sprinkler system and is designed to operate before a sprinkler head fuses. This network is electric and may be actuated by normally closed rate compensated heat detectors, or normally open manual pull station. The detection system operates before the sprinkler fuses and gives an alarm. When the detection system operates it gives an alarm and activates the flow control valve.

In addition to automatically detecting a fire and turning the system on, Firecycle® III has the added ability to sense when the fire has been controlled, and automatically turn off the water flow once a preprogrammed "Soak Timer" has been satisfied. Should the fire rekindle, the releasing control panel will initiate the sequence again. This unique Firecycle® III feature will repeat as long as power is available to the panel, helping to minimize water usage, water damage, and the danger of pollution to surrounding areas.

A special features offer perfect fail-safe modes, Firecycle® III preaction systems provide protection with or without electrical power. If a condition occurs that removes both the primary and secondary power supplies, the pneumatic actuator becomes the release mechanism and the system will operate as a dry pipe system.

The Firecycle® III preaction system requires a VIKING VFR-400 releasing control panel.

All the valves are rated up to a maximum of 250 psi WWP (1724 kPa) max. and are available in the following diameters:

- **1½" (40 mm)**
- **2" (50 mm)**
- **3" (80 mm)**
- **4" (100 mm)**
- **6" (150 mm)**
- **8" (200 mm)**

Standard features

- cULus Listed & FM Approved as an assembled unit
- Factory assembled and tested under ISO-9001 standards
- Prewired to a terminal block
- Easy and compact installation
- Viking conventional trim rated at 250 psi (1724 kPa)
- Galvanized trim piping
- Serial number for easy reference
- Corrosion resistant cabinet with flush type handle and lock
- No open drain cup inside the unit
- Numerous modular options to meet the most demanding jobsite requirements
- Four styles of modular air supply options
- Inlet & outlet hydrostatic test ports
- User-friendly standardized operation & installation manual
- Free interactive simulator
Cabinet

The **TOTALPAC®3** cabinets are made of sturdy 14 gauge steel, they are available in four (4) sizes;

- 23" x 25" x 77" (58.4 x 63.5 x 195.6 cm) for 1½", and 2" systems,
- 36" x 25" x 77" (91.4 x 63.5 x 195.6 cm) for 3" and 4" system,
- 46" x 25" x 77" (116.8 x 63.5 x 195.6 cm) for 6" system
- 54" x 31" x 81" (137.2 x 78.7 x 205.7 cm) for 8" system

All surfaces are rust proof coated, inside and outside, with fire red, oven baked polyester powder on phosphate base. Cabinet is provided with one or two doors, all provided with a neoprene gasket to absorb vibrations.

A field wiring electrical junction boxes is integrated with the cabinet for connection of all electrical components in the trim. Pressure switches, supervisory switches, etc. are all factory wired to a terminal strip (TBA) for contractor's field wiring.

Gauges to indicate air, water supply pressure and priming water pressure are all visible through clear Lexan windows.

IMPORTANT: TOTALPAC®3 units are NOT designed to be installed where they will be subjected to outdoors and/or freezing conditions. Refer to environmental data for additional details. Subjecting the unit to conditions outside these limitations might tamper the normal operation of the system.

A field wiring electrical junction boxes is integrated with the cabinet for connection of all electrical components in the trim. Pressure switches, supervisory switches, etc. are all factory wired to a terminal strip (TBA) for contractor's field wiring.

Multiple unit installations are easily achieved by manifolding units together at their water inlets but drains shall remain separate and open.

Sequence of operation (see trim diagram)

In a fire condition, when the detection condition is satisfied, system releasing control panel (supplied by others) activates an alarm and energizes normally closed solenoid valve (F2) open and normally open solenoid valve (F1) closed.

Pressure is released from the priming chamber of the flow control valve (A1) to the open drain manifold faster than it is supplied through the restricted orifice (B3). The flow control valve clapper opens to allow water to flow into the system piping and alarm devices, causing the alarm pressure switch (C1) and optional water motor alarm (C2) to activate. When a sprinkler head opens, water will flow from the system.

When the flow control valve operates, the PORV (B9) is pressurized, causing it to latch open. Water discharges until all Firecycle®III detectors have reset (cooled below their set point). After all detectors have reset, the Firecycle®III releasing control panel activates the soak timer, allowing the system to flow water for a pre-determined period of time. When the soak timer has expired, the releasing control panel de-energizes the normally closed solenoid valve (F2), allowing it to close (the normally open solenoid (F1) remains energized closed until the system is manually reset or all power (both AC and batteries are lost). The flow control valve re-primes and closes, stopping the flow of water through the piping system. Should a Firecycle®III detector go into alarm, the releasing control panel reenergizes the normally closed solenoid valve (F2) open, and the entire cycle repeats.

Systems hydraulic limitations

WARNING The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer.

Designers should refer to the appropriate NFPA Standards and any other applicable codes for their final design. Also refer to FireFlex Systems Inc. appropriate user manuals and to manufacturer's data sheets for additional details.

Systems limitations indicated below are nominal flow limitations.

<table>
<thead>
<tr>
<th>System size (in.)</th>
<th>Usage Range (gpm)</th>
<th>Piping Equivalent Lengths w/o shut off valve</th>
<th>Piping Equivalent Lengths c/w shut off valve</th>
<th>Drain flow @ 250 PSIG w.p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½</td>
<td>0 – 210</td>
<td>8.3 (m.) 27.2 (ft.)</td>
<td>8.5 (m.) 27.9 (ft.)</td>
<td>272</td>
</tr>
<tr>
<td>2</td>
<td>0 – 360</td>
<td>11.65 (m.) 38.2 (ft.)</td>
<td>11.85 (m.) 38.9 (ft.)</td>
<td>272</td>
</tr>
<tr>
<td>3</td>
<td>100 – 700</td>
<td>19.84 (m.) 65.1 (ft.)</td>
<td>23.38 (m.) 76.7 (ft.)</td>
<td>762</td>
</tr>
<tr>
<td>4</td>
<td>200 – 1400</td>
<td>21.89 (m.) 71.8 (ft.)</td>
<td>25.33 (m.) 83.1 (ft.)</td>
<td>1597</td>
</tr>
<tr>
<td>6</td>
<td>400 – 3500</td>
<td>33.28 (m.) 109.15 (ft.)</td>
<td>37.28 (m.) 122.3 (ft.)</td>
<td>1597</td>
</tr>
<tr>
<td>8</td>
<td>750 – 5250</td>
<td>41.15 (m.) 135 (ft.)</td>
<td>44.71 (m.) 146.7 (ft.)</td>
<td>1597</td>
</tr>
</tbody>
</table>
Flow control valve

The Viking flow control valve is a quick opening, differential type flood valve with a spring loaded rolling diaphragm clapper. The flow control valve can be used to facilitate manual or automatic on/off control. The Viking flow control valve is an integral part of the Viking Firecycle® System.

The valve is held closed by system water pressure trapped in the priming chamber, keeping the outlet chamber and system piping dry. In fire conditions, when the releasing system operates, pressure is released from the priming chamber. The flow control valve clapper opens to allow water to flow into the system piping.

Preaction riser check valve

The Viking spring loaded In-Line check valve is a general purpose rubber-faced check valve approved for use in fire-service systems. The Spring Loaded In-Line check valve is manufactured with a brass body, brass seat, and a rubber-faced clapper assembly.

The Viking Easy Riser® Swing check valve is a general purpose rubber-faced check valve approved for use in fire service systems. The valve is for use in preaction system risers.

Water supply control valve

The water inlet control valve is a supervised, indicating butterfly valve. Purpose of this valve is to manually shutoff the preaction system.

Solenoid valve

The high pressure solenoid valve is a two-way type with one inlet and one outlet. It is a packless, internal pilot operated valve, suitable for use in releasing water pressure from the priming chamber of Viking flow control valves. The solenoid valve has floating diaphragm construction, which requires a minimum pressure drop across the valve to operate properly.
Standard equipment (continued)

Releasing circuit disable switch
The releasing circuit disable switch is used to disable the releasing solenoid. When the key is set to “Disable”, the releasing solenoid will be disconnected from the control panel’s releasing circuit, causing a trouble signal and preventing accidental discharge during maintenance or inspection.

![Releasing Circuit Disable Switch](image)

Pneumatic actuator
Used in conjunction with the solenoid valve, the Viking Pneumatic Actuator is a spring loaded, rolling diaphragm and piston operated valve. It is used wherever a combination is required between the detection and system’s loss of air.

![Pneumatic Actuator](image)

Alarm pressure switch
The alarm pressure switch monitors the water flow within the sprinkler piping. Should the Deluge Valve clapper open to allow water to flow into the sprinkler piping, the alarm pressure switch will activate, indicating a water flow signal.

![Alarm Pressure Switch](image)

Low air supervisory switch
The low pressure switches monitors the pressure within the sprinkler piping should a loss pressure of the air below 25PSI occurs, the pressure switch contacts transfer indicating low air supervisory signal. Should a loss pressure of the air below 23PSI occurs, the pressure switch contacts transfer indicating low air alarm signal.

![Low Air Supervisory Switch](image)
Optional mechanical equipment

- **Shut-off valve & sight glass option**
 The Shut-off valve & sight glass option is intended to be used for applications where testing of the system operation without filling the sprinkler piping network is desirable and where it is critical that all functions of the preaction system be tested under actual discharge conditions. Examples of such applications are freezers, ovens, museums, data processing and other hazards where the possibility of water leaking from the piping system is to be avoided at all costs.

 Warning: Shut-off valve & sight glass option is **not available** on 8" systems.

- **Fire department connection**
 The fire department connection option consists of a grooved tee fitting installed at the outlet of the deluge valve (A1). An access hole of the proper diameter is factory pre-drilled on the side of the **TOTALPAC®3** enclosures for connection of the piping going to the fire department connection.

 Note: The fire department connection hardware itself (drain, Siamese, etc.) is **NOT** provided with this option and shall be provided by the installing contractor. Refer to NFPA-13 Standard for additional information about the equipment layout and installation.

 Warning: Fire department connection is **not available** on 8" systems.

Diagram:
- **Main Drain Valve (D3)**
- **Supervised Shut-off Valve (D4)**
- **Sight Glass Assembly (D5)**
- **Point flash light here**
- **Supervised Water Supply Control Valve (D1)**
- **Grooved Tee Fitting with Coupling & Cap**
- **To Fire Dept' Connection (hardware by Contractor)**
Optional mechanical equipment (continued)

- **Semi and full flange option**
 When required by the user, **TOTALPAC®3** units can be provided in either a semi-flanged or full flanged configuration.
 The semi flanged option provides flanged fittings only on the water inlet pipe (side needs to be specified at the time of order) and on the system riser outlet. The drain manifold is then provided with a threaded end that also needs to have its side specified (left or right). The rest of the fittings are the same as usual with the main components being provided in the standard grooved-grooved configuration.
 The full flanged option is the same as above but goes a step further with the main components being also provided with a flanged-flanged configuration.
 When provided, the face of the flanges will always be situated 6 inches from the outside face of the mounting base or cabinet surface.

- **Anti-column device option**
 The model LD-1 anti-column device is an optional trim component designed for use with preaction sprinkler systems. The anti-column device automatically prevents an unwanted water column from establishing within the system riser. On preaction sprinkler systems the anti-column device prevents water from columning downstream of the easy riser check valve.

- **OSHPD option**
 Pre-approved construction, under OSP-0341-10, using specific components.
Air supply

- Direct air compressor (Style “A”)

Used only for the sprinkler piping network of the preaction system. Air supply style "A" includes the air compressor mounted inside the TotalPac®3 cabinets with its supervisory trim and options. Compressors are of the tankless, oilless piston type and are factory piped to the sprinkler system riser, all within the TotalPac®3 cabinets.

Compressors are available in six (6) sizes:

- 1/6HP
- 1/3HP
- 1/2HP
- 1 HP
- 1-1/2HP
- 2 HP

<table>
<thead>
<tr>
<th>Compressor Size (HP)</th>
<th>115Vac / 60Hz</th>
<th>230Vac / 60Hz</th>
<th>220Vac / 50Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>5.0 Amp.</td>
<td>2.5 Amp.</td>
<td>1.3 Amp.</td>
</tr>
<tr>
<td>1/3</td>
<td>7.4 Amp.</td>
<td>3.7 Amp.</td>
<td>2.5 Amp.</td>
</tr>
<tr>
<td>1/2</td>
<td>10.0 Amp.</td>
<td>5.0 Amp.</td>
<td>4.0 Amp.</td>
</tr>
<tr>
<td>1</td>
<td>18.0 Amp.</td>
<td>9.0 Amp.</td>
<td>6.0 Amp.</td>
</tr>
<tr>
<td>1-1/2</td>
<td>16.6 Amp.</td>
<td>8.3 Amp.</td>
<td>6.3 Amp.</td>
</tr>
<tr>
<td>2</td>
<td>N/A</td>
<td>11.0 Amp.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

WARNING

1-1/2HP and 2HP air compressors are only available for 8" system.

WARNING

The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer.

Compressor Service Factor Amp (S.F.A) rating

WARNING

The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer.

115 / 230 Vac – 60Hz air compressor selection Table:

<table>
<thead>
<tr>
<th>H.P</th>
<th>CFM @ 40 PSI</th>
<th>System capacity to fill system to 35 PSI in 30 minutes</th>
<th>System capacity to fill system to 55 PSI in 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1.33</td>
<td>142 gal.</td>
<td>90 gal.</td>
</tr>
<tr>
<td>1/3</td>
<td>2.61</td>
<td>285 gal.</td>
<td>181 gal.</td>
</tr>
<tr>
<td>1/2</td>
<td>4.06</td>
<td>417 gal.</td>
<td>265 gal.</td>
</tr>
<tr>
<td>1</td>
<td>7.40</td>
<td>702 gal.</td>
<td>447 gal.</td>
</tr>
<tr>
<td>1-1/2</td>
<td>7.40</td>
<td>1045 gal.</td>
<td>665 gal.</td>
</tr>
<tr>
<td>2</td>
<td>7.40</td>
<td>1400 gal.</td>
<td>890 gal.</td>
</tr>
</tbody>
</table>

For systems with maximum water supply pressure of 175 PSI (1206 kPa)

For systems with water supply pressure between 175 PSI (1207 kPa) and 250 PSI (1724 kPa)

WARNING

The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer.

220 / 240 Vac – 50Hz air compressor selection Table:

<table>
<thead>
<tr>
<th>H.P</th>
<th>LPM @ 40 PSI</th>
<th>System capacity to fill system to 35 PSI in 30 minutes</th>
<th>System capacity to fill system to 55 PSI in 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>35.4</td>
<td>442 L</td>
<td>268 L</td>
</tr>
<tr>
<td>1/3</td>
<td>68</td>
<td>855 L</td>
<td>545 L</td>
</tr>
<tr>
<td>1/2</td>
<td>4.06</td>
<td>1302 L</td>
<td>825 L</td>
</tr>
<tr>
<td>1</td>
<td>7.40</td>
<td>2244 L</td>
<td>1427 L</td>
</tr>
<tr>
<td>1-1/2</td>
<td>7.40</td>
<td>3278 L</td>
<td>2085 L</td>
</tr>
</tbody>
</table>

* For systems with maximum water supply pressure of 175 PSI (1206 kPa)

** For systems with water supply pressure between 175 PSI (1207 kPa) and 250 PSI (1724 kPa)

WARNING

The information contained herewith is for estimation and evaluation purposes only. Its use remains the responsibility of the designer.
Air supply (continued)

- **Air Pressure Maintenance Device (Style “B”)**
 Used only for the sprinkler piping network of the preaction system, when an external air supply is provided by others (tank mounted compressor, plant air or dry nitrogen cylinders) and piped to the air inlet port of the unit. Air supply style "B" provides an Air Pressure Maintenance Device (APMD) trim, factory mounted in the TotalPac®3 cabinets.

- **Direct air, external compressor (Style “D”)**
 Mainly used with Preaction systems protecting refrigerated spaces and freezers, where a special dry external air supply unit is piped directly to the system riser inside the freezer itself, as shown in NFPA-13. Air supply Style "D" provides only an air supervisory and shut-off trim.

Warning: When air supplies style "B" or "D" is selected, the air supply should be provided and installed by the sprinkler contractor OUTSIDE of the TotalPac®3 cabinet. It is NOT provided with the unit.
Optional air supply equipments

- Dehydrator option
 The Viking Dehydrator is a manually regenerated desiccant-type air dryer. The desiccant acts as a moisture indicator by changing color, and is visible through the required bowl guard and transparent plastic bowl. The Dehydrator directs the incoming air down through the silica gel desiccant. The silica gel absorbs the moisture without physically changing. As the relative humidity increases, the silica gel begins to change color from dark blue to light pink, indicating the desiccant must be replaced.

Style "A" layout
Style "B" layout
Details & field wiring diagrams

Cabinet with main components - Configuration without releasing control panel, shown with air style "A"

- Optional Air Compressor
- Isolating Switch
- Release Solenoid
- Disconnect Switch
- Cable Entry
- Junction box
- TBA & TBB
- Riser Outlet to Sprinklers Network
- Riser Check Valve
- Straight Through Flow Control Valve
- Water Supply Control Valve
- Drain Outlet (either side)
- Water Inlet (either side)
Trim Components:

A2 Flow control valve
B1 Priming valve
B2 Strainer
B3 1/8" Restricted orifice
B4 Spring loaded check valve
B5 Alarm test valve
B6 Flow test valve
B7 Drip check valve
B8 Drain check valve
B9 Pressure operated relief valve (PORV)
B10 Emergency release valve
B11 Priming pressure water gauge & valve
B12 Water supply pressure gauge & valve
B13 Clapper check valve

C1 Alarm pressure switch
C2 Connection to water motor gong (strainer supplied by contractor)
D1 Water supply control valve
D2 Riser check valve
D3 Main drain valve
F1 N.O. solenoid valve – 24Vdc
F2 N.C. solenoid valve – 24Vdc
F3 Pneumatic actuator

FIELD CONNECTION TO OPEN DRAIN (on both sides)
FIELD CONNECTION TO WATER SUPPLY (on both sides)
TotalPac Base (shown without enclosure)
FIELD CONNECTION TO SPRINKLER PIPING NETWORK
To Air Supply System Trim
To Air Supply System Trim
CONTRACTOR'S HYDROSTATIC TEST PORT (water supply side)
Field wiring diagram:

WIRING OF AIR COMPRESSOR POWER SOURCE (WITH AIR OPTION "A" ONLY)

- **TBB**
 - 120VAC, 60Hz
 - 220VAC, 50Hz

- **LINE**
- **NEUTRAL**
- **GROUND**

- **AIR COMPRESSOR**
- **2HP MAX**

Refer to Local Electrical Codes for wiring size.

NOTES:
- All devices are factory wired.
- All devices are shown in their normal supervisory state.
- Contacts are rated:
 - Pressure switches: 2A, 30VDC, 5A, 125/250VAC
 - Supervisory switches: 0.5A, 250VDC, 0.25A, 250VDC, 5A, 1/6HP, 125/250VAC
- Use dry contacts with power limited circuits only.
- ECL devices (not included) must be compatible with the Release Control Panel used.

SOLENOID VALVE ELECTRICAL RATINGS

<table>
<thead>
<tr>
<th>Viking P/N</th>
<th>Description (De-energized)</th>
<th>Voltage</th>
<th>Watts</th>
<th>DC Amps</th>
<th>Pressure Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>11591</td>
<td>NC</td>
<td>24 VDC</td>
<td>10.0 DC</td>
<td>416 mA</td>
<td>300 psi (2068 kPa)</td>
</tr>
<tr>
<td>11595</td>
<td>NO</td>
<td>24 VDC</td>
<td>10.0 DC</td>
<td>416 mA</td>
<td>300 psi (2068 kPa)</td>
</tr>
</tbody>
</table>

Notes:
1. Solenoid Valve is UL Listed as Fire Protection Special System Water Control Release Service (UL 429A Product category VLTR).
2. Voltage Drop: For proper operation, make sure that voltage at the solenoid valve is at least 85% of nameplate rating.

Note: This unit has been provided without the Integrated Release Releasing control panel. Due to Listings and Approvals specific to the Firecycle® System, no other release releasing control panel other than the Firecycle® III Model VFR-400 Releasing control panel can be used with this unit. Use of any other releasing control panel is not recommended and will void the unit's Listings & Approvals and may prevent the system from operating normally.
Figure 1 – Cabinet dimensions:

Dimensions are nominal and may vary ±1/4".
Dimensions V and W are with the optional Fire Department Connection

System Size	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	U	V	W			
1½" Preaction cabinet unit	2"	1½"	2"	2"	2"	25"	77¾"	4"	8¼"	11¾"	13¼"	2"	2½"	8"	11¾"	37½"	44½"	47½"	27"	43"	50½"			
2" Preaction cabinet unit	2"	2"	2"	2"	2"	2"	25"	77¾"	4"	8¼"	11¾"	13¼"	2"	2½"	8"	11¾"	37½"	45"	47½"	27"	43½"	50½"		
3" Preaction cabinet unit	4"	3"	2"	3½"	2"	2"	25"	77¾"	4"	10"	11¾"	13¼"	2"	2½"	4"	10"	11¾"	44"	47½"	51¾"	39¼"	51"	54½"	
4" Preaction cabinet unit	4"	4"	2"	3½"	2"	2"	25"	77¾"	4"	10"	11¾"	13¼"	2"	2½"	2½"	2½"	12"	11¾"	48½"	53"	56¾"	61"		
6" Preaction cabinet unit	6"	6"	2"	2"	2"	2"	25"	77¾"	4"	11"	11¾"	13¼"	3"	2½"	5½"	5½"	17½"	11¾"	59½"	65"	70½"	50"	70½"	n/a
8" Preaction cabinet unit	8"	8"	2"	2"	2"	2"	25"	77¾"	4"	12"	13¼"	17"	3¼"	9"	6¼"	27"	13¼"	70"	75½"	n/a	58"	n/a	n/a	

SYSTEMS WEIGHTS

Cabinets without control panel

<table>
<thead>
<tr>
<th>System Description</th>
<th>Weight (lbs)</th>
<th>Weight (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½" Preaction cabinet unit</td>
<td>460</td>
<td>209</td>
</tr>
<tr>
<td>2" Preaction cabinet unit</td>
<td>465</td>
<td>211</td>
</tr>
<tr>
<td>3" Preaction cabinet unit</td>
<td>740</td>
<td>336</td>
</tr>
<tr>
<td>4" Preaction cabinet unit</td>
<td>755</td>
<td>342</td>
</tr>
<tr>
<td>6" Preaction cabinet unit</td>
<td>1035</td>
<td>469</td>
</tr>
<tr>
<td>8" Preaction cabinet unit</td>
<td>1485</td>
<td>674</td>
</tr>
</tbody>
</table>
TotalPac®3
Single interlock Firecyle III Preaction Remote controlled system

Figure 2 – Anchoring dimensions:

<table>
<thead>
<tr>
<th>System Size</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½”</td>
<td>25”</td>
<td>15”</td>
</tr>
<tr>
<td>2”</td>
<td>25”</td>
<td>15”</td>
</tr>
<tr>
<td>3”</td>
<td>37¾”</td>
<td>15”</td>
</tr>
<tr>
<td>4”</td>
<td>37¾”</td>
<td>15”</td>
</tr>
<tr>
<td>6”</td>
<td>48”</td>
<td>15”</td>
</tr>
<tr>
<td>8”</td>
<td>56”</td>
<td>21”</td>
</tr>
</tbody>
</table>

Figure 3 – Cabinet clearance dimensions

<table>
<thead>
<tr>
<th>System Size</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½”</td>
<td>24”</td>
<td>12”</td>
</tr>
<tr>
<td>2”</td>
<td>24”</td>
<td>12”</td>
</tr>
<tr>
<td>3”</td>
<td>24”</td>
<td>12”</td>
</tr>
<tr>
<td>4”</td>
<td>24”</td>
<td>12”</td>
</tr>
<tr>
<td>6”</td>
<td>24”</td>
<td>12”</td>
</tr>
<tr>
<td>8”</td>
<td>32”</td>
<td>12”</td>
</tr>
</tbody>
</table>

Figure 4 – Knockouts detail

- Top of Cabinet
- High voltage
- Low voltage
- 2½”
- 3¾”
- 8½”
- 3”
Figure 5: Open drain details for single unit:
(See dimensions in table below)

Figure 6: Open drain details for multiple units:
(See dimensions in table below)

Dimension table

<table>
<thead>
<tr>
<th>Unit Size:</th>
<th>1½"</th>
<th>2"</th>
<th>3"</th>
<th>4"</th>
<th>6"</th>
<th>8"</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8¾"</td>
<td>8¾"</td>
<td>10"</td>
<td>10"</td>
<td>11"</td>
<td>12"</td>
</tr>
<tr>
<td>B</td>
<td>13¾"</td>
<td>13¾"</td>
<td>13¾"</td>
<td>13¾"</td>
<td>13¾"</td>
<td>17"</td>
</tr>
<tr>
<td>C</td>
<td>2"</td>
<td>2"</td>
<td>2"</td>
<td>2"</td>
<td>2"</td>
<td>2"</td>
</tr>
</tbody>
</table>

Notes:
1. Supply and drain pipes can be connected on either side of cabinet.
2. All pipes and fittings should meet applicable codes.
3. Actual drain collector diameter shall be determined with detailed hydraulic calculations and is the responsibility of the system designer.